Abstract
Introduction
Autologous chimeric antigen receptor (CAR) T cells induce high rate of deep remissions among children with relapsed/refractory B-precursor acute lymphoblastic leukemia (R/R B-ALL). In a significant proportion of patients true cure is achieved only with HSCT as post-CAR-T consolidation. Seeking to combine the cytoreductive and curative power of HSCT with the antigen-specific activity of CAR-T we devised an approach with simultaneous infusion of haploidentical ab T cell-depleted graft and CAR-T cells, derived from the same donor. The approach was offered to patients with R/R B-ALL on a compassionate use basis and here the first experience is summarized.
Patients and methods
A total of 11 patients with relapsed/refractory BCP-ALL (n-10) and Burkitt leukemia(n-1), (5 female, 6 male, median age 8,3 y) were treated. Three patients had relapsed BCP-ALL after both haploidentical HSCT and autologous CD19 CAR-T cell, 3 after haploidentical HSCT, 2 after autologous CD19 CAR-T cell, 3 after intensive chemotherapy +/- blinatumomab (n=2).
Seven patients had CD19 and CD22 positive leukemic cells in bone marrow (MRD+ n=1, >20% blasts n=6), 2 pts had MRD-level disease with CD22 positive blast cells and 2 pts were in CR2.
Peripheral blood mononuclear cells used to produce CAR T cells were provided by the patient's transplant donor.
The CliniMACS Prodigy T cell transduction (TCT) process was used to produce CD19 and СD19/22CAR-T cells.
Five (45%) pts received treosulfan-based myeloablative preparative regimen, while TBI-based regimen was used in 6 (55%) pts. GvHD prophylaxis included tocilizumab at 8 mg/kg on day -1 and abatacept at 10 mg/kg on day -1, +7, +14, +28.
Final product was administered without cryopreservation to the patients: 10 pts received allogeneic CAR T cell with haploidentical (n=10) and match related (n=1) TCRαβ-depleted graft (CD19 CAR- T cell n=1 and CD19/22 CAR- T cell n=10). The CAR-T cell product was administered at a dose of 0,1*10 6/kg of CAR-T cells in all pts. The median dose of CD34+ cells was 8.5 x10 6/kg (range 5-15), αβ T cells - 56x10 3/kg (range 9-172).
Results
Primary engraftment was achieved in 10 of 11 pts (non-engraftment patient relapsed early), the median time to neutrophil and platelet recovery was 13 and 14 days, respectively.
Cytokine release syndrome occurred in 7 patients (63%) and all were grade ≤3. Six patients (54%) had neurologic events (ICANS grade 3, n=1). No aGVHD 3-4 were observed, 4 pts developed grade 2 aGVHD (skin and gut).
The median time to CAR-T cell peak expansion was 14 days (7-28). The median time to CAR-T cell persisted was 6 months (2-12) and B cell aplasia was 7 months.
All engrafted patients achieved CR (MRD negative) at day +28 after CAR-T cell therapy, one patient died due to Mucormycosis at day +31. One patient relapsed after 2 months after HST. Eight patients are alive in CR with a median follow up 291 days (85-388).
Conclusion
Our early experience suggests that haploidentical CAR-T cells can be safely infused simultaneously with the hematopoietic stem cell graft on the platform of ab T cell depletion. The infusions did not compromise engraftment and GVHD control, while specific CAR-T toxicity was mild and manageable. We have documented allogeneic haploidentical CAR-T expansion and persistence. Prospective testing of the approach is warranted.
Maschan: Miltenyi Biotec: Speakers Bureau.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal